Расчет центрально сжатых и изгибаемых деревянных элементов

На сжатие работают стойки, подкосы, верхние пояса и отдельные стержни ферм (рис. 3.3).

Расчет центрально сжатых и изгибаемых деревянных элементов

Расчет центрально сжатых и изгибаемых деревянных элементов

Расчет центрально сжатых и изгибаемых деревянных элементов

Рис. 3.3. Сжатый элемент:

а — график деформаций и образец; б — схемы работы, разрушения и эпюра

напряжений; в — типы закрепления концов и расчетные длины; г—график

коэффициентов устойчивости ? в зависимости от гибкости ?.

Разрушение центрально сжатых элементов может произойти от потери устойчивости или прочности.

Центрально сжатые элементы рассчитывают по формулам:

— на прочность

— на устойчивость

где N – расчётное сжимающее усилие;

F=(Fбр-Fосл), как для растянутых элементов;

Fрасч – расчётная площадь при проверке устойчивости.

Принимается равной Fбр – при отсутствии ослаблений;

при ослаблениях, не выходящих на кромку, если площадь ослаблений Fосл?0,25Fбр, то Fрасч= Fбр;

при Fосл0,25 Fбр,

при симметричных ослаблениях, выходящих на кромки Fрасч= Fнт.

При несимметричных ослаблениях, выходящих на кромку, элементы рассчитываются как внецентренно сжатые.

Коэффициент продольного изгиба ? – отношение критического напряжения, при котором стержень теряет устойчивость, к пределу прочности материала на сжатие.

Коэффициент ? обычно меньше 1, зависит от гибкости стержня ?. При ??min, коэффициент ? находится по формуле Эйлера:

Гибкость элементов ? определяют в зависимости от их расчётной длины и радиуса инерции поперечного сечения по формуле:

Расчётная длина зависит от способа закрепления элемента и равна

.

На изгиб работают настилы, обрешётки, обшивки плит и панелей, стропильные ноги, прогоны, балки (рис. 3.4).

Расчет центрально сжатых и изгибаемых деревянных элементов

Расчет центрально сжатых и изгибаемых деревянных элементов

Рис. 3.4. Изгибаемый элемент:

а — график прогибов и образец; б — схема работы и эпюры изгибающих моментов; в — схема разрушения и эпюры нормальных напряжений; г — схема работы при косом изгибе и эпюра напряжений

Изгибаемые элементы рассчитываются на прочность и жёсткость (по деформациям или прогибам), т.е. по двум предельным состояниям. Различают два вида работы элементов на изгиб: простой изгиб, когда нагрузка действует в плоскости одной из главных осей инерции поперечного сечения элемента; косой изгиб, когда направление нагрузки не совпадает ни с одной из главных осей инерции сечения (рис. 3.4, б).

Изгибаемые элементы на прочность при простом изгибе рассчитываются по формуле:

где Wрасч – расчётный момент сопротивления по площади нетто. Для клееных (гнутых) деревянных элементов

Wрасч=Wнтmб(mгн),

для составных стержней на податливых связях

Wрасч=Wнтkw,

При простом изгибе сечение по заданному изгибающему моменту М подбираются по формуле:

По найденному моменту сопротивления находят размеры поперечного сечения и подбирают пиломатериал по сортаменту, например для прямоугольного сечения.

При косом изгибе (рис. 3.4, г) расчёт элементов на прочность по нормальным напряжениям производится по формуле:

Мх и Мy– составляющие расчётного изгибающего момента относительно главных осей x и y,

Wx и Wy – расчётные моменты сопротивления поперечного сечения нетто для осей х и y,

Ru – расчётное сопротивление изгибу.

Для подбора прямоугольного сечения косоизгибаемого элемента можно пользоваться формулами:

Проверка на скалывание производится по формуле Журавского:

Прогибы вычисляются как относительная величина

в предположении упругой работы древесины по формулам сопротивления материалов в соответствии с расчётными схемами. Необходимо выполнение условия:

Прогиб элементов с учётом воздействия касательных напряжений определяют по формуле:

f0- прогиб без учёта касательных напряжений;

k — коэффициент, зависящий от схемы нагружения внешней нагрузкой;

?- коэффициент, зависящий от формы поперечного сечения и коэффициента Пуассона (?) материала балки.

Полный пролёт балки при косом изгибе равен геометрической сумме прогибов

и

от составляющих сил

и

Косой изгиб существенно увеличивает размеры прямоугольного сечения (прогонов), поэтому следует конструктивными мероприятиями добиваться того, чтобы основная нагрузка действовала в плоскости наибольшей жёсткости.

Наименьшая площадь поперечного сечения прямоугольного прогона при косом изгибе из условия прочности получается при соблюдении отношения:

а из условия прогиба

при

Сопротивление материалов. W-01 (устойчивость, введение)

Похожие статьи:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector